On the k-fold iterate of the sum of divisors function

نویسنده

  • Jean-Marie De Koninck
چکیده

Let γ(n) stand for the product of the prime factors of n. The index of composition λ(n) of an integer n ≥ 2 is defined as λ(n) = log n/ log γ(n) with λ(1) = 1. Given an arbitrary integer k ≥ 0 and letting σk(n) be the k-fold iterate of the sum of divisors function, we show that, given any real number ε > 0, λ(σk(n)) < 1 + ε for almost all positive integers n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

Some Problems of Erdős on the Sum-of-divisors Function

Let σ(n) denote the sum of all of the positive divisors of n, and let s(n) = σ(n)− n denote the sum of the proper divisors of n. The functions σ(·) and s(·) were favorite subjects of investigation by the late Paul Erdős. Here we revisit three themes from Erdős’s work on these functions. First, we improve the upper and lower bounds for the counting function of numbers n with n deficient but s(n)...

متن کامل

Approximately generalized additive functions in several variables via fixed point method

In this paper, we obtain the general solution and the generalized   Hyers-Ulam-Rassias stability in random normed spaces, in non-Archimedean spaces and also in $p$-Banach spaces and finally the stability via fixed point method for a functional equationbegin{align*}&D_f(x_{1},.., x_{m}):= sum^{m}_{k=2}(sum^{k}_{i_{1}=2}sum^{k+1}_{i_{2}=i_{1}+1}... sum^{m}_{i_{m-k+1}=i_{m-k}+1}) f(sum^{m}_{i=1, i...

متن کامل

Common values of the arithmetic functions φ and σ Kevin

We show that the equation φ(a) = σ(b) has infinitely many solutions, where φ is Euler’s totient function and σ is the sum-of-divisors function. This proves a fifty-year-old conjecture of Erdős. Moreover, we show that, for some c > 0, there are infinitely many integers n such that φ(a) = n and σ(b) = n, each having more than n solutions. The proofs rely on the recent work of the first two author...

متن کامل

Common Values of the Arithmetic Functions

We show that the equation φ(a) = σ(b) has infinitely many solutions, where φ is Euler’s totient function and σ is the sum-of-divisors function. This proves a 50-year old conjecture of Erdős. Moreover, we show that there are infinitely many integers n such that φ(a) = n and σ(b) = n each have more than n solutions, for some c > 0. The proofs rely on the recent work of the first two authors and K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016